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1 . INTTODUCTION

Remote sensing and parameter optimization are two active

space-related research areas. The purpose of this contract

was twofold:

(i) to present to the Mission Planning and Analysis

Division a short course on the basics and state-of-the-

art of remote sensing;

(ii) to analyze recent developments in parameter

optimization and determine their implications with

respect to on-board guidance.

In Section 2, the format of the short course is outlined.

In Section 3, results on parameter optimization are presented.

The Fletcher and Broyden parameter optimization techniques are

described and compared with the Davidon-Fletcher-Powell (DFP)

method. Both of these methods have been built into the

NASA-iSC PEACE parameter optimization program. In Section 4

the Johnson-Kamm parameter guidance scheme is discussed and a

method for computing the feedback gains with a single numerical

integration is presented. In Section 5 conclusions and recom-

mendations for future study are presented, with an emphasis on

the status and future of parameter optimization based on-board

guidance.

1



2. REMOTE SENSING

A short course was presented during December 1971 through

February 1972. The lecturers were members of the University of

Michigan Willow Run and High Altitude Engineering Laboratories.

The format of the course was as follows:

1st and 3rd Weeks: Basics of Remote Sensing and The User

Community. Fundamentals and definitions of remote sensing,

user's needs (e.g., agronomists, resource managers, environ-

mentalists, meteorologists, government agencies); basic

mathematics and physics.

2nd Week: Multivariant Spectral Analysis. Relevant mathematics

and physics review; retreval of spectral, spatial, and temporal

parameters; underlying principles of pattern recognition.

4th and 7th Weeks: Advanced Mathematics and Physics of Remote

Sensing. Physics of spectroscopy, propagation, absorption,

scattering, radiative transfer, geometrical and physical optics,

and physics of sensing. Mathematics associated with the physics,

basic probability and statistics, Fourier series and transforms,

and numerical techniques.

5th Week: The Atmospheric Environment. Basic physics of the

atmosphere, meteorological measurements from space vehicles,

atmospheric parameters pertinent to environmental problems,

circulation, sources and sinks for atmospheric pollutants.

6th Week: Imaging Sensing. Classification of passive and active

sensors. Passive: multispectral scanners, infrared scanners.
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Active: high-resolution radar. Characteristics of the sensors,

data reduction, error sources, typical results.

8th Veek: Nonimaging Sensing. Fourier transform spectroscopy,

filter radiometry, microwave spectroscopy. Characteristics of

the sensors, data reduction, error sources, typical results.

.~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t

.,



3. PARAPITER OPTIMIZATION

In Refs. 1-3, shuttle ascent trajectories are optimized

by representing the steering angle rate as a sequence of

straight line segments, and then applying the DFP parameter

optimization technique. Eventually parameter optimization may

be used on-board in the determination of steering commands.

If so, then one should attempt to develop schemes which. do not

require an extensive 1-D search. One of the goals of this

contract was to determine the relative performance capabilities

of the DFP method and a modified Fletcher's method,4 ' 5 which

does not require an extensive 1-D search. In addition to this

comparison, a relatively new method due to Broyden6 which

requires a 1-D search was also considered since it is closely

related to both the DFP and Fletcher methods. Both of these

techniques have been built into the NIASA-14SC PEACE program.

3.1 'The Parameter Optimization Algorithm

Consider the minimization of the differentiable real-valued

function:

~f(X1, X n) (3.1)f(xl' ' · · , xn). 

All of the iteration schemes of this report utilize update

formulas of the form

X(k+ l) X(k) a H(k) 

where x(k) _ current value of the vector x, x(k+l) new

value of x, ak _ a scalar parameter (the 1-D search parameter),

I g(k)_ (k)
Hk .an nxn matrix which is updated on each iterate, g (k (X

- the gradient of f evaluated at x(k). A particular scheme
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is defined by the way that it updates Hk and Ck. First the

algorithm will be stated, and then the underlying theory will

be discussed in Section 3.2. A flowchart of the scheme is

given in Fig. 1. The notation a( ) ' C )J+- ( )- is

employed below.

(1) Specify xo, ao, Ho, -L. Calculate fo - fCxo],go gxo] ; ;

set J=O. (Ho is an arbitrary symmetric, positive

definite matrix and a > 0.)

(2) Calculate f(J+1) 1 fCx;j - aJ1 HJgJ], where aJ1 is the

current estimate of aJ, and check f(J.1)1 < fJ. If

yes, go to (3) if cJ1 =1 or go to a crude step-size

increase package if ajJ1-L 1; if no, go to a crude

step-size decrease package. The resultant step-size

is denoted by aJ.

(3) If J=0, go to (5) If Jo 0, check 'Yr /( MTA) X /l,-

If yes, go to (4); if no, decrease aJ until the

inequality is satisfied and then go to (4).

(4) Check 10 g . - S X: T

If yes, go to (5); if no, increase dJ until the

inequality is satisfied and then go to (5).

(5) Calculate XJ+1 =XJ - aJHjgJ and gJ+1. Check

e AL X -C> O . If yes, go to (6). If no,

increase aj.

(6) Check AO XABL%-

If yes, go to (8); if no, go to (7).
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(7) Calculate:

Go to (9).

(8) Calculate:
-T-

,, ,- , A.

(3.4)

*+ (1±+ ) ( T 
-. ,. ,,. 3- . A-r '3"-

Go to (9).

(9) If aJ<l1, set aJ+1 =aJ; otherwise, set aJ.,=l. Set

J = J-1 and go to (2).

From the algorithm above one can see that a r=1 is the

desired value of the stepsize, and in the terminal iterations

of the scheme aj - 1 if the scheme is behaving like Nerwton's

method as desired. Fletcher4 bases most of his discussion on

the aj = 1 case and devotes little attention to the aJ L 1 case.

In the trajectory optimization problems of this report, the

aj i 1 case occurs more often than not because of the difficulty

of the problem and'the use of finite difference formulas for

the gradient calculations. Thus, more details about the mJ 1

case have been included in this section than in Ref. 4.

3.2 Theoretical Basis

The algorithm of Section 3.1 is basically a scheme for

choosing between two formulas for the II+1 -matrix while

preserving a reasonable stepsize. Either Eq. (3.3) or (3.4) is
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used to define HJ+1. Equation (3.3) is the classical DFP

formula, a rankr-two formula. Equation (3.4) is also a ralnk-two

formula which has been studied in its own right in Refs. 6 and 7.

The fact that Eq. (3.4) is rank-two may be seen by rewriting it as

T T

IT Iz- (3.5)

In Ref. 6, Broyden shows that both Eqs. (3,3) and (3.4) are

members of his one-parameter class of formulas introduced in

Ref. 9, and that both satisfy the "quasi-Newton property'!,

HjA+1 J= L gJ. Equation (3.3) results by choosing his j-

parameter to be zero while-Eq. (3.4) results if Pj=-/( gjT nxj).

Broyden noted that in numerical experiments comparing the use

of Eqs. (3.3) and (3.4) separately and with a 1-D search that

the algorithms had similar characteristics in the early stages

but quite different characteristics in the terminal stages. This

behavior is explained by the fact that lJ = 1/(AgJThxJ) may be

near zero in the early stages of the algorithm because the

gradients may be relatively large (where i6 gJTA Xji 

g Xi g gJT x in a quasi-Newton scheme

which employs a 1-D search). Since Eq. (3.4) and a 1-D search

for the DFP program were required in the simulations, it was an

easy task to also obtain simulations of Broyden's new method,

i.e., Eq. (3.4) with a 1-D search.

Before considering Fletcher's justification for the basic

algorithm, mention should be made of the occurrence of Eqs. (3.3)
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and (3.4) in Ref. 7. Since numerous updating formulas for the

H-matrix have been proposed in the past decade, Greenstadt8

considered the problem of choosing the "'best" update formulas

subject to appropriate constraints (e.g., symmetry and finite-

convergence for a quadratic with a 1-D search). After investi-

gating a number of performance indices, Greenstadt found that

the following optimization problem gave tractable results:

Minimize: F( Hj) = Tr (VI L WA JT) (3-6)

TSubject to: A HJT = Hj (symmetry), (3.7)

a HY H gj = b xJ - HjA gj, (quasi-Newton) (3.8)

where Tr( ) - trace of ( ) and W is an arbitrary matrix to be

specified. The expression-obtained for A HJ by solving the above

minimization problem involves the arbitrary matrix l. Goldfarb7

found that W- 1 = HJ+1 results in Eq. (3.4) and WV- = HJ+1-

(gTAxj )(H j gjT ) / (g A THj eg )3 /2 results in Eq. (3.3),

the DFP formula. He also showed that zT( HJ |1 I- AHJ o0 )z > 0,

where z arbitrary n-vector, a HJl HJ+1 - HJ in Eq. (3.4),

and L Hj J o Hj+- - Hj in Eq. (3.3) This means that Eq. (3.4)

is less likely to tend toward singularity while Eq. (3.3) is less

likely to tend toward unboundedness. Fletcher4 obtained a similar

result by a different argument, and this forms the basis of his

algorithm.

Let us noe7 consider Fletcher's method. Denote the formula

of Eq. (3.3) by H ° and the formula of Eq. (3.4) by H1. Let 0

be a scalar parameter and define the linear combination

Ha (1-O)HI + OH1
0 (3.9)
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It is shomn in Ref. 4 that if 0 e [0,1], then H. possesses the

following property: If f(x) is a quadratic function with

-G -[fxixj] positive definite, then the eigenvalues of G1 /2 H G1/ 2

(Arranged in order) tend monotonically to one for any sequence of

vectors Ax. (I.e., H1 tends to the inverse Hessian G 1 in a

certain sense.) Note that the property does not require a 1-D

search. In addition to this property, it is shown that if

o [0,1], then H' 1 may diverge from G.

Since Eq. (3.9) represents an infinity of formulas, if it

is to be useful there must exist a rule for selecting which value

of .d [0,1] to use on a given iterate. Fletcher presents such a

scheme by noting that a typical pitfall in the classical Davidon

method is the tendency of the updating matrix H to become either

singular or unbounded. He shows that if 0 > 0 , then

the eigenvalues (A 1' ' ' A n) of HX, H~i (arranged in ascending

order) are such that A(;) L AL (C/) '(i = 1,...,n), which

implies H1 -.=.H 1 is "less singular" than Ho H |=0,1 imples i =1 0

and Ho is "less unbounded" than H1. Thus, a simple test for

nearness to singularity would indicate whether to use Ho or H1,

which are the extreme elements of the class H., O [0,1].

Fletcher shows that

T T T
= S C_ gA X/(A g ATx - agHag)

defines the "rank one" formula

= 14 3+ )(xT - 9), XT - TTA9T)

thaCt(Axd - HA-t) (3 .10)i:.-? A~r Ft::-J 
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The interesting thing about this formula is that if A gT x >O,

then d [O0,1], and the formula does not restrict the

eigenvalues of H in any wvay. Thus, one can use the rank one

formula to indicate which value of F6{0,1} should be used by

simply checking the sign of A gTAx - ~gTHAg; that is, if

A gT Ax>O is enforced, then Ag TAx - AgTHAg> O implies

d >1 (which means H1 should be used) and AgTAX - AgTH1g<O

implies -U O (which means Ho should be used).' If AgTZL x -.
T

A gTH Ag = O, then H
1
is used to avoid singularity. Note that

this test is step (6) of Section 3.1.

The only other steps in the algorithm wvhich need to be

discussed are steps (3) and (4). Step (3) is a check to determine

if the stepsize is so large that an unreasonably small decrease in

the function is attained. That is,

J+1fJ+ =fJ +g jT 0 ( 2) . (3.11)

implies

Afj/(gjT5 xJ) = 1 + 0(A)-. (3.12)

If 0 <A fJ/gjT Xj .- 1, then the decrease in cost is unreasonably

small with respect to the steepness of the gradient.

Step (4) is a "filter" for the test

AgJTA x3 >o. (3-13)

It was noted in a number of simulations before the insertion of

step (4) that condition (3.13) was violated. It is well known

that if f is bounded from below, then there exists a larger value

of aJ which will cause the inequality to be satisfied, and in

Fletcher's paper a scheme for increasing aJ is presented. However,
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this scheme might result in numerous costly gradient evaluations.

(In the problems of the next section, a single gradient is

approximately as costly as fourteen to eighteen function evalua-

tions.)' Since gradient calculations are so costly, an approximate

test had to be devised to avoid the calculation of more than one

gradient per iteration, and step (4) is the result.

T
It was noted that whenever the . gJ xJx>O test was violated,

the value of igjTaxJ I was appreciably smaller than the value

gJT1 A x (two to three orders of magnitude smaller). That

is, on successive iterates on which gTx >0, the value of

Tg Tx was changing by zero to one-to-a-half orders of magnitude,

whereas it changed by at least two to three orders of magnitude

when the test was violated.

Note that to cause | gJT Axj to increase toward

gJT- 1 XJ 1 , one need only increase the value of the search

parameter, which is the same remedy for the L gJ AxJ> O violation.

Thus, the following test was employed before the computation of

g(xjl): 

TT T
100gJ AxJ ~gJ1 axJ_1 -l (3.14)

'T

i.e., if gjT Xj is at least 100 times greater than gJ-1 AxJ-1

then the stepsize is increased and a decrease in gJT xj is

guaranteed. (Note that gTA x 0 is guaranteed on each iterate

because of step (3).) For all the shuttle computations this

test always detected the AgJT&xj>O violation without computation

of g(XJ+1) for an unacceptable xJ+1 - value.

The test (3.14) has not been proved mathematically and it

seems feasible that there exist cases when the test is satisfied
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by A gJ xJ' 0O and/or the tolerance value of 100 is unsuitable

for other physical situations. However, A mgJ AxJ must be

computed in each iteration for the H-formulas, and thus, the

gjTxJ 7>0 inequality can always be checked and guaranteed. In

any case, no more computation is required than in the original

Fletcher's method since gjT XJ must be computed for other

formulas in the method.

3.3 Space Shuttle Trajectory Optimization

A number of Space Shuttle trajectory optimization problems

were simulated in the development of the algorithm, including

three ascent problems and a reentry problem. A comparison of

numerous algorithms for the stage-and-half configuration ascent

problem are presented here along with partial results for a

pressure-fed booster configuration ascent problem.

The stage-and-half optimization problem involved eighteen

parameters (azimuth adjustment parameter, payload, pitch angle

at the time when engines dropped, and fifteen pitch rates),

where payload is to be maximized. The optimization is from ten

seconds.after liftoff to orbital insertion (50 x 100 with inclina-

tion specified). The results for this optimization problem are

presented in Tables 1 and 2.

In Table 1 a comparison of DFP and the Modified Fletcher's

method is shownm for the case of a reasonably good guess for the

initial parameter vector. The relatively small value of gTHg on

the fifty-second iterate of the.DFP method indicates that the

problem is reasonably converged on that iterate. Considering the

fifty-second iterate of the DFP method as the converged solution,
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four digit accuracy is obtained by DIP on the twenty-sixth

iterate and by the Modified Fletcher's Method on the thirty-first

iterate (with respect to payload and boundary condition satis-

faction). Since DFP requires more function evaluations and since

a single gradient calculation corresponds roughly to eighteen

function evaluations, the computing times to reach the twenty-

sixth iterate in DFP and the thirty-first iterate in Modified

Fletcher are approximately the same. As shown in Table 1, ten

more iterates are obtained for the Modified Fletcher's method in

the same amount of computer time. However, DFP gets a lower

value for the cost in the same amount of computer time, thus

exhibiting better terminal convergence.

In Table 2 a comparison of six algorithms is shown for a

poor guess of the initial parameter vector. In the first column

the gradient method (with a 1-D search) is included to.,show

the difficulty of obtaining good terminal convergence in this

problem. The next two methods, DFP and Broyden, were the best

performers with Broyden slightly better than DFP. Note that DFP

and Broyden give identical costs (to four digits) in the early

iterates and then Broyden begins to get slightly lower costs; this

is the same characteristic Broyden6 noticed. The last three

columns show three methods which use only a crude search: Modified

Fletcher, DFP with a crude search, and Broyden with a crude

search. All three methods gave comparable results with Modified

Fletcher obtaining the lowest cost in ten minutes computer time.

All three H-formulas satisfy the main property of Fletcher's

paper (i.e., a ~[0,1]), and for this particular problem probably
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give similar results because the H-matrix remains well-behaved.

Although these three methods are not better than DFP or Broyden

(with searches) on this problem, they are appreciably better

than the gradient method and yet do not require extensive

programuing.

Table 3 shows an incomplete study of results obtained for

the pressure-fed booster shuttle ascent problem. In this problem

an element of the main diagonal of the H-matrix in the DFP method

became appreciably smaller than the other elements of the main

diagonal in the early iterates. This caused the 1-D search

considerable trouble in obtaining a minimum, as noted by the

large number of function evaluations (especially on the 3rd, 4th,

and 5th iterates). In this particular problem the Modified

Fletcher's method performed better than the DFP method in that it

required a considerably less number of function evaluations and

obtained a lower cost value in the same number of iterates. Note

how the Modified Fletcher method uses both of the formulas on

this problem (i.e., Eq. (3.3) is used 6 times, Eq. (3.4) is used

5 times).

During the course of the study a number of observations were

made writh respect to the performance of the algorithms and reports

of their performance in the literature. These are summarized

below.

(i) The performance of the DFP method is strongly dependent

upon the 1-D search used. In the early part of the study,

the Modified Fletcher method required approximately the same

amound of computer time as DFP to obtain. the same cost on a
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number of different problems. Then a more sophisticated

search was used in the DFP algorithm. The DFP method then

became a much better performer. This explains how, in the

literature, numerous algorithms are reported to outperform

DFP, when with an efficient search DFP is clearly the better

performer. (In Ref. 4, Fletcher's method is reported to

outperform DFP on a number of standard functions. However,

when the two were compared with the NASA-MSC PEACE DFP

program, DFP easily outperformed Fletcher's method.)

(2) In a number of papers in the literature, little

emphasis is given to the expense of computing gradients as

opposed to function evaluations. For example, the IBM

Scientific Subroutine version of DFP calculates a gradient

each time it evaluates the function. This calculation is

not serious on low-dimension, test type problems, but it is

extremely important when realistic problems are attacked

(especially problems which require numerical integration for

the function and gradient evaluations).

(3) In the early stages of the study, the effect of

resetting to a-gradient step every so many iterates was

investigated.- On the problems considered herein it was not

found to be helpful; in fact, it was found to be..detrimental

in the terminal stages of convergence because the H-matrix

had to be rebuilt. Most of the example problems in the

literature which get improved convergence'vrith reset are of

relatively low-dimension. (One theoretical advantage of
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reset is if it is included in any stable H-matrix type

algorithm, then convergence can be proved for the same

class of functions for vwhich convergence can be proved

for the gradient method.)



4. OPTIMAUL PAIRAMETER GUIDANCE

Because of the success of the DFP algorithm in solving

complicated Shuttle optimization problems, Ref. 11 proposes

that the DFP algorithm may be useful for on-board guidance.

A first approach to the problem is also presented in Ref. 11.

In this section we shall demonstrate the technique of

Ref. 11 on a simple example, and reference some of the technical

literature which is relevant to the areas of optimal neighboring

and parameter guidance. Recommendations and conclusions are

presented in Section 5.

Consider the folloving optimal control problem.

M.inimize: J = ½x 2(t2 (41)2 f

Subject to: I =u x1 (O)=x2 (O)=O

j 2 lul1 , tf=2 (4.2)
X 2 -2xl IUZ f2

rne optimal control may be determined by inspection as

u (t) = {-1
0 ta (1,21. (L1(4.3)

Since the optimal control is a sequence of piecevrise constant

segments, it satisfies the requirements of the Johnson-Kamm (J-K)

guidance nominal control. The neighboring guidance function is

u(t) = C[U.(0)-U(1)] +2U(1), (4.4)

where U(a) 1 t> a is the unit step function and o(
0 t<a

Cf2 are the constant controls on the intervals [0,1), (1,2],

respectively. Of course, the values of c1 and c2 would be

updated during each guidance cycle.

17
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Suppose (t
o
, x

1
0, x20), with to_ [0,1), is obtained by

navigational measurements and (to, x10 , x20) is near some point

(t,x (t),x2(t)) on the nominal trajectory. Given the control

components '1, 2 (which we shall show how to calculate later),

the final values of x1 and x2 are

x1(2) = c 1 (1-to) + xo+ 2(2 - 1) (45)

x2 (2) = x20 + It [ l<1(t-to ) + x10 ] dt
0

+ i2 [ 2(t-1) + x10 + c 1(1-to)]2 dt (4.6)

Thus, the performance index is

J(C;Xo) = x 2 (2) 20 + 1 <(t-t) + 10] dt

+ 4 2 [d2 (t-1) * x1 + rX (1-to)] dt 2 (4,7)

Reference 11 suggests that this function of the guidance

parameters should be minimized on the ground before the flight

to determine nominal values for c1' 2 (in 'this case,
* *

C.1= -1,'(2 = 0), and then form the linear feedback guidance

functions

Cig1 + K(t )(x1 0 - (t + K 1 2 (to)(X 2 0 2(to))

(4.8)
C0 2 2 + K

2 1
(to)(Xlo-x1(to)) +22(to)(x20-x2(to)),

where to is the time of the navigational measurement rwith

to [0,1). The nominal values c>l,C2, xl (t), x2(t), tG[0,2]

and time varying gains K ij(t), t- [0',1), t e(1,2] are stored

on-board. As noted in Ref. .12, the choice of clock time, to,

as the reference time in Eq. (4.8) is usually nonoptimal. Pro-

cedures for determining the .'best" index time are presented in
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Ref. 12, e.g., the index time typically is the time on the

reference trajectory which mninimizes the state space distance

between the measured state and nominal state trajectory.

The neighboring optimal feedback gains K. (t) are determLined

by expending the first-order necessary conditions for a mini!umr

of J(: 1 , CZ 2) That is, define

J DJ ·
0l(-/;%) = 1 g2( '';xo ) 2 (4 9)

On the nominal trajectory

~l ( * ;*0) = g2 (
^

".xo) = o

From Eq. (4.7), the expressions for gl g2 are (assuming to. r[0,1)):

01 = -'1 = 19 } [& t1 rl(t-to) +](1t-t )dt

6+ 2 [C 22(t-1) 2 r( t0 ) + x 11(](t o ) + ]( 4.0)

d J [ 2 [ (t-1r) + '1 (1-t) + x1 0 ] (t- 1)dt
02 -3m2 ' 3 10 ' 

K..1 cv (4.1!)

where 5 ... is the bracketed term in Eq. (4.7).

Formally, the expansions of gl and g2 about (;< ,xo) are

2 a~2

(4.12)

which implies (upon solution for'ls , 2):

"1,:1 2 ° 'lX i

LcriJ ?-- aA L 9r±2 tDY5 jL XVi J

(4.13)
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The existence of finite feedback gains is dependent upon the

existence of an inverse for Define

P = ,,, , (4.14)
L 

where ,, is the bracketed term of Eq. (4.7). Then,

= g P (4-15)

which implies

-. 7%i lb r2ptL .T~Th~ L2? (~lDiL . L

~~~~~~~- - ' (4.16)

As t -> 1, P- >0, >- "-- 0 which implies the gains become

infinite at the end of the constant control interval.

In general, as noted in Ref. 11, the gains become infinite

at each constant control interval endpoint. This is analogous

to infinite gains at the terminal time in existing guidance schemes,

Since conservative allowances are made for the infinite-gain-at-tf

problem in existing guidance schemes, a similar procedure would

be necessary for the guidance scheme of Ref. 11 at every constant

contral interval endpoint. Because of this the scheme would

lose much of its optimality, and probably not be competitive

with a physically based guidance scheme.

Another aspect of the scheme is that its normality or

controllability properties are probably poorer than existing

schemes. For example, in the example problem of this section,
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if to o (1,21 then only one control parameter (X2) is available.

In a general problem where tight terminal boundary conditions are

usually desired and the number of state variables is larger

than the number of control variables (the usual case), the

terminal phase would not have enough control parameters to

influence all of the terminal state variables. Thus, a modified

terminal phase would probably be required.

In Ref. 11 it is noted that a considerable amount of

premission analysis would be required to compute the matrices

required for the feedback gains because a forward integration

of the differential equations for the matrices would be required

from each guidance update time. Actually this computation can

be reduced to a single backward integration by use of adjoint

systems. That is, suppose

X = A(t)X + B(t) , X(to) = X (4.17)

is the given matrix linear system. Define,

T TZ = -Z A (4.18)

Then,

-dtZT) = zTB (4.19)dt,

or

zT(tf)X(t
r
) = ZT

o
)X(t) + (t)Bt)dt (4.20)

Choosing

T )
z (t*) = I, (4.21)

and integrating (4.18) backward with the boundary condition

(4.21) defines Z(t). If the system is inhomogenous, then one

more backward integration is required to define t ZT(t)B(t)dt.

After these backward integrations, the matrix X('t) for an
±
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arbitrary to G [ t tf] is given by

X(t*) = ZT(to)X(to ) + ZT(t)B(t)dt. (4.22)

To conclude this section mention should be made of the

optimal parameter guidance scheme of Ref. 13. In Ref. 13,

physically motivated parameters involved in analytical solutions

for subarcs of the total trajectory are updated by use of the

parameter conjugate gradient method on-board. Thus, use is made

of an accelerated gradient technique on-board, and the conjugate

gradient method ,,as chosen because of less storage requirements

With acceptable convergence properties. Even though the scheme

of Pef. 11 was motivated by the excellent convergence properties

of the DFP method in ground-based simulation, it does not employ

DFP on-board. Furthermore, the only reason for associating the

scheme vith DFP is because the nominal trajectory is computed

-th DFP. More will be said about this aspect in.Section 5.



5. CONCLUSIONS AND RECOM112L.DATIONS

5.1 Conclusions

1.) The modified Fletcher parameter optimization scheme

is an effective scheme for trajectory optimization

which does not require an elaborate 1-D search. On

well-behaved problems, DFP gave better performance,

especially with respect to terminal convergence.

The modified Fletcher method performed better on

problems with ill-conditioned H-matrices.

2.) The Broyden method appears to'be a promising new

method. A related possibility is the Fletcher method

with a 1-D search. All of these methods have been

built into the NASA-ISC PEACE program.

3.) It does not appear that accelerated gradient methods

have progressed to the point where they would be

useful for on-board optimal parameter guidance. For

such applications, they need to be improved in three

main areas: (i) elimination or near-elimination of

the 1-D search, (ii) guaranteed rapid terminal con-

vergence, and (iii) reduction of storage requirements

(the conjugate gradient method already satisfies this

requirement). Since these areas are active research

areas, improvements should be expected.

4.) The neighboring optimal parameter guidance scheme

proposed in Ref. 11 does not appear to be feasible

23



because of infinite gain and controllability problems,

in addition to the usual restrictions of a neighboring

optimal guidance scheme.

5.2 Recommendations

1.) Perform further simulations wtith the Broyden and

Fletcher (rith a 1-D search)' parameter optimization

schemes. They should be especially effective on

problems where the H-matrix is ill-conditioned.

2.) Continue studying ways of eliminating the elaborate

1-D search from accelerated gradient parameter

optimization schemes. This rill hasten the use of

these schemes in on-board guidance.

The guidance scheme in Ref. 13 represents a reasonable

blend of physical based guidance and on-board parameter

optimization. It appears that this same idea may be

applicable in reentry guidance. For example, the

guidance scheme proposed in Ref. 14 is essentially a

parameter guidance scheme vwith pieced subarcs of

approximate analytical solutions. Thus, the possibility

of adapting a parameter optimization scheme to the

scheme should be investigated.
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Figure 1. FLOW CHART OF THE ALGORITHM
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Da vidon- Fletche r -Pow

Cost

. 13201 x 10I
·10640 x 10'
. 10322 x 101

.98038

.21987
.14202

.84552 x 10I1

.84198 x 10_
i

.84187 x 10_
i

.84182 x 10

84181 x 10j

No. of
Function
Evaluations

1
12
4
4
6
6
6
4
3
5
3

*Used DFP formula (Eq. 3.3)

Search
Pa ramete rs

.646 x 10
- 4

. 701 x 10 - 2

. 161 x 10 

. 440
.795 x 10
-124 x 102
.876 x 10'
.326
.198 x 103

280 x 101
_ _ 

vell Modi

df =*-gTH
d t c =g0 Cost

-. 79 x 104 .13201 x 10
-. 90 x 10 .10913 x 10'
-. 6 8 x 101 .10595x 10'

-. 37 x 10' 10480 x 10'
-. 28 x 10' .57441

-. 21 x 100 25564
-. 28 x 10 .57 3 8x 10

-6 -1
-. 61 x 10 .84427 x 10
-. 36 x 10 . 84212 x 10
-. 48x 10 9 .8420 6 x 10
-. 7 9 x 10 .84204x 10-

84202 x 10

(43 minutes. Univac 1108; central differences)

I I I I

ified Fletcher

No. of
Function
Evaluations

1

4*

5*
2*

4*

2*
Z*

2*
4*

Search
i Pararnete rs

. 1 25 x 10 - 4

.312 x 10-3

. 156 x 10 - 2

. 195

.195
.43S x 10
.763x 102
.477 x 10

- 3

.298 x 10 3

.596 x 10
- 3

. 142 x 10

TUsed Broyden formula (Eq.3,4 )

Table 1. Stage-And-Half Configuration; Good Initial x,.

i I
!Gradient Method

Iteration

Nrmer No. of

0
1
2

3
4
5
6
7
8

9
10
12
14
16
18
20
22
30
50
60

Cost

1611

271.1
54.65
13.04
10.83
8. 667
7.736
6.922
6. 438
6.123
6.038
5. 143
3. 574
2. 891
2. 834
2.790
2.718
2.457
1.739
1. 727

_Eval

1
7
5
5
4
4
4
4
4
4
4

17
17
15
17
6
4
4
25
4

I.

(Approx. 40 min., Univac
I I.

DFP
(with search)

No. of
Fn.

Cost Eval

1611
271..1
13.75

2. 792
1.311

.8897

.2636

.1621

.1563

.1554

.1461
.1183
.1046

.0972

.0923

.0888

.0875

.08553

.08516

.08490

1

7
4
4
4
4
S
4
4
4
4
4
4
4
5
4
5
6
6
5

B royden
(with search)

Cost

1611
271.1

13.75
2.792
1.311
.8897

2636
1621

.1563

.1554
1461

.1183

.1045

0967
0921
0886

.0873

.08551,
08508!
08485 i

1\o. of
Fn.

Eval.

1

7
4
4
4
4
5
4
4
4
4
4
4
4
5
4
5
5
6
4

1108; fo rwa rd differences )

I I I
* Used DFP formula (Eq. 3,3 )

Modified Fietche

Cost

1611
397.7
34.64
32. 24

30.95
8.795
6. 003
5.968
3.123
2.631
2.420
2. 205
.8923
.5323
.3663
.3252
.3092

(10 min.,

1I

No. of
Fn.

Eval

SI
l0*
5t
7 *
3*

3t
3t
3t
3*
3t
3t
3*
4t
3 *
3*
3t
31

DFP
(crude

Cost

1611
397.7
34.64
32. 27
28. 31

7. 948
5. 571
4. 809
3. 429
2. 85 
2. 749
1. 815
1. 528

.43:

.374

.361

.348

search)
No. of

i'n.
Eval.

3

1 3
9 3
9 3
)0 3
9 3

5 4
8 5

39 5
41 3
19 3
85 4

Univac 1108; forward

I I I

Bro-yden
(crude search)

\No. of

Cost Eval.

1611 1

397.7 10
63.07 5
30.72 6
16.58 4
7.395 3
4.426 3
3.422 3
3.241 3
2.388 4
2.123 5

.4776 3

.4309 4

.3682 4

.3238 3

.3104 3

diffe rence s)

TUsed Broyden formula (Eq.3.4 ).

Table Z. Stage-And-Half Configuration; Poor Initial x
o
.

Iteration

Number

0
1
2
3

.4
5
10
20
30
40
52
62

-7

1

7

I

.1.

i

,..I

II

I

___1

f
I
i

i

i
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Cost

1.058
1.058
1. 057
1.056
1.056
'1.053
1.050
1.024
1.001
.9883
.9615
.9592
.9547
.9 378
.9360

Davidon -Fletcher -Powell

Number of
Function Search i
Evaluatins. Parameter j

1
4
5

26
37
30
5
9
6
5
7
7
5
5

22

(22.5 min., Univac

-JI
*Used DFP formula (Eq. (3.3).

1108;

I

.25 x 10

.95 x 10-

.35x 10O

.68x 10l

.10x 10I

.53

.93 x 10

.84 x 10'

.68x 10

.21 x 102

.16 x 101

.44 x 0lt

.94 x 10'

.10x 108

4

2

I

4

df = gTH1

da =0

-. 8

-. 2

-. 3x 10 -
1

-. 9x 10l
-.1 x 102

-. 1 x 10
-. 4x10

- 2

-. 3x10
-. 3x 10i

-2-. 3 x 10_
- x10

-. 6x 10_
-. ZxlO

central differences)

I

Modified Fletcher

Cost

1.058
1. 058
1.057
1.057
1. 056
1. 056
1.033
1. 029
.9816

.9751

.9607

.9554

(7 min., Univac
differences)

L ~~~~~I

Number of
Function

Evaluations

5 *

3t
6*

11*
4*
3*
31
3t
3t
31

Search
Pa rame te r

.12xlo02

.78x 10
.78x 1 0-

-3
.48x 106
.95 x 10-6
.24 x 10

. IZ x 10 6.12 x -6

-12 x10-6.I12x 10

1108; central

lUsed Broyden formula (Ea.3. 4 ).

Table 3. Ascent Problem with H-Matrix Tending to Singularity in DFP Method.

Iteration
Number

0
1
2
3
4
5

7
8
9

10
11
15
20
34

- ~ ~~~~ - __

I
I

C

I


